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This talk

(1) Where did it come from?

an unknown 
many-body state

(2) Does it represent some intelligent design?

 → Some universal properties of states of systems that avoid thermalization
       revealed by the entanglement spectrum

[M. Serbyn, A. Michailidis, D. Abanin and ZP,  Phys. Rev. Lett. 117, 160601 (2016)]

 → How “far” is the state from any free state? 
[C. Turner, K. Meichanetzidis, ZP, and J. Pachos, arXiv:1607.02679; 
                                        Nat. Commun. 10.1038/ncomms14926 (2017)]



“area law” 

[Kitaev, Preskill; Levin, Wen '05]

Entanglement spectrum

How does it scale with size of A?

product (unentangled) state

random (thermal) state

Entanglement spectrum 
[Li, Haldane '08]

(gapped states)

A

B

Momentum

Quantum Hall state

Is there more generic content? 

(e.g., independent of geometric 
or conformal symmetries)
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Generic behavior of closed quantum systems

Quenched disorder (random field)

Isolated quantum many-body system

Hopping Interaction

Quenched disorder (random field)

Interaction
Hopping

Random on-site potential

Isolated quantum many-body system

Jordan-Wigner

1. Prepare an unentangled initial state

2. Evolve with a known Hamiltonian and observe

A useful probe: global quench

Ground state Excited states

What is the generic behavior of isolated 
quantum many-body systems at arbitrary 
energy density?

 (open problem even in 1D)



Dynamics of entanglement: Thermalization vs. Localization

0
Anderson insulator

“Many-body localized” phase

interaction random fieldhopping

ergodic

ergodic

                      
• An infinite system is a heat bath
• System achieves thermal 
    equilibrium
• Finite D.C. transport
• Extensive entanglement

Long time scales

Anderson

MBL

[Bardarson, Pollmann, Moore, ‘12; Serbyn, ZP, Abanin,’13] 

• Not a heat bath
• Doesn’t thermally equilibrate 
• D.C. transport is zero
• “Area-law” entanglement

[Anderson, Fleishman’80;  
Basko,Aleiner,Altshuler’05; 
Gorniy,Polyakov,Mirlin’05;
Oganesyan,Huse’08; 
Znidaric,Prosen, Prelovsek ’08; 
Pal,Huse’10, ...]



Local integrals of motion in the MBL phase
Phenomenological Hamiltonian in the MBL phase: Local integrals of motion:

[Serbyn, ZP, Abanin, '13; 
Huse, Nandkishore, Oganesyan, '13; 
Imbrie '14;  Chandran et al. '14; 
Ros et al., '14]

● Consequence 1: System does not relax

● Consequence 2: Area law entanglement

[M. Schreiber et al, Science  349, 842 (2015)]

“MBL eigenstates are similar 
to ground states of 
gapped systems”

[T. O'Brien, D. Abanin, G. Vidal, ZP,  arXiv:1608.03296;
see also Rademaker, Ortuno ‘15; You et al, ‘15; Inglis, Pollet ‘16;
ergodc phase: H. Kim, M. C. Banuls, J. I. Cirac, M. B. Hastings, and
D. A. Huse, ‘15 ]

[Bauer, Nayak ‘13]
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How do the local integrals of motion affect the entanglement?

Entropy obeys area law, what about entanglement spectrum?



Known universal properties of the ES in generic systems

In a random or thermal state: 

[Zhi-Cheng Yang et al., PRL 115, 267206 (2015)]

             Marchenko-Pastur distribution

             = density of eigenvalues of a Wishart matrix

Critical systems in 1D

Free systems: 
Wick’s theorem

[Peschel, Chung ‘01; 
Okunishi, Hieida, Akutsu ‘99]

Entanglement spectrum has universal form
given only by central charge of the CFT
[Calabrese and Lefevre '08; Pollmann and Moore, '09]

Example: Heisenberg model with small disorder

Example: quantum Ising model



Power-law entanglement spectrum in MBL systems

● Different from typical ground states of gapped systems where the ES decays faster

● Useful for benchmarking MPS-type variational calculations in MBL context

[M. Serbyn, A. Michailidis, D. Abanin and ZP,  PRL 117, 160601 (2016)]

Finite size tails are described
by “order statistics” for the
Gaussian distribution

[Blom, ‘58]

●  There is no symmetry, so the effective quantum number is Schmidt rank

[Related work on the statistics
of spacing between Schmidt values:
Geraedts, Nandkishore, Regnault,
arXiv:1603.00880]



Power law from local integrals of motion
Pick an eigenstate and expand it: e.g.

The vectors are not orthogonal! Once they are orthogonalized, their norm gives the ES

For the first two blocks:

[M. Serbyn, A. Michailidis, D. Abanin and ZP,  PRL 117, 160601 (2016)]



Open problems

[M. Schiulaz, M. Muller, '13;  
T. Grover and M. Fisher, '13;
de Roeck/Huveneers, '13; 
Hickey, Genway, Garrahan, '14; 
Yao et al., '14; 
ZP, Stoudenmire, Abanin '15, ...]

ES in “glassy” systems  without disorder

Many-body localization transition Power-law exponent at the MBL transition?

[Luitz, Laflorencie, Alet ‘14]

[possibly non-zero, see Monthus ‘16]
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Motivation

A generic quantum state

Similar goal to machine learning

Nearly free systems are easy to understand. 
But many interesting systems in nature are not obviously free:



Interaction distance

[Markham et al., PRA 77, 042111 (2008)]

Assume            have been diagonalized.

We are looking for              

Theorem: minimum (or maximum) is achieved
when U is the permutation matrix

with some {c} bosonic or
 fermionic mode 
operators.

Consequence: only need to vary the free 
entanglement levels

Can        be distinguished from a free particle density matrix      ? 

F contains all unitary orbits 
of Gaussian states



Properties of interaction distance

● Measures distance of a given reduced density matrix 
● from the manifold of free system’s density matrices

● Contains information about both 
long-wavelength and short-distance properties

● Generalizes mean-field theory;
when MF is applicable, then

● Can be calculated efficiently if the 
entanglement spectrum is known

● Importantly, the free quasiparticles are not
necessarily of the same statistics as the original
ones

We can change the dimensions of entanglement
Hilbert space to accommodate e.g., the case where
the free quasiparticles in a fermionic system behave
as bosons  

● Obeys finite-size scaling at critical points

= correlation length exponent

= determines whether the interactions
    are relevant or irrelevant in RG sense



Example: 1D Quantum Ising model

Longitudinal field (interaction)

AFM phase diagram 
by DMRG: 
Ovchinnikov et al., 
PRB 68, 214406 (2003)

Ferromagnetic Antiferromagnetic

[Zamolodchikov,
 Int. J. Mod. Phys. A 4, 4235 (1989)]



Maximally interacting states

For two fermionic modes, 
it can be proven that the state
which maximizes interaction distance is

Interestingly, this state is the fixed point 
of parafermionic Z3 Hamiltonian:

We can use the parafermionic ansatz to guess an
upper bound for any number of modes:

[see e.g., Jermyn, Mong, Alicea, and Fendley, ‘14]

Guess:

Match against:

[K. Meichanetzidis, C. Turner, A. Farjami, ZP, J. Pachos, arXiv:1705.09983]



Open questions
(1) Construct an actual closest free model
      instead of just measuring its distance

(2) Apply this to paradigmatic interacting systems

Main candidate: quantum spin liquids, FQHE states...

[Rodriguez and Sierra '09; Sterdyniak et al. '12; Dubail, Read, Rezayi '12]

Integer QH state  →

[Davenport et al., 
PRB 92, 115155 (2015)]

With few fitting parameters
 the ES  of very large systems 
can be accurately modeled

FQHE? e.g., 1/3FM Ising

AFM Ising



Conclusions
● Entanglement spectrum still reveals new aspects of many-body systems
● In strongly disordered systems,                                                                                 

the ES has a universal power-law structure

(a consequence of local integrals of motion)

● “Interaction distance”                                                                                                  
measures how far a many-body                                                                                
state is from the closest free state.

Potentially useful for identifying “most interacting” points in the phase 
diagrams of quantum many-body system, where new physics may be 
hiding.



Acknowledgments

Dmitry Abanin
Geneva

Maksym Serbyn
Berkeley

Alexios Michailidis
Nottingham

Chris Turner
Leeds

Kon Meichanetzidis
Leeds

Jiannis Pachos
Leeds

Ashk Farjami
Leeds


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

